Tag: Instruments

 
+

Sensing methods of Dielectrophories from Bulky Instruments to Lab-on-a-chip

Recently, the sensing methods for dielectrophoresis (DEP) have been changed from bulky instruments to lab-on-a-chip. Lab-on-a-chip based the dielectrophoresis phenomenon holds the promise to give biology the advantage of miniaturization for carrying out complex experiments. However, until now, there is an unmet need for lab-on-a-chip to effectively deal with the biological systems at the cell level.

Published in:

Circuits and Systems Magazine, IEEE (Volume:4 , Issue: 3 )

 

Yehya H. Ghallab, and Wael Badawy, “Sensing methods of Dielectrophories from Bulky Instruments to Lab-on-a-chip,” IEEE Circuit and Systems, Vol. 4, Issue 3, 2004

+

A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,

 

This paper presents a novel current-mode instrumentation amplifier (CMIA) that utilizes an operational floating current conveyor (OFCC) as a basic building block. The OFCC, as a current-mode device, shows flexible properties with respect to other current- or voltage-mode circuits. The advantages of the proposed CMIA are threefold. First, it offers a higher differential gain and a bandwidth that is independent of gain, unlike a traditional voltage-mode instrumentation amplifier. Second, it maintains a high common-mode rejection ratio (CMRR) without requiring matched resistors, and finally, the proposed CMIA circuit offers a significant improvement in accuracy compared to other current-mode instrumentation amplifiers based on the current conveyor. The proposed CMIA has been analyzed, simulated, and experimentally tested. The experimental results verify that the proposed CMIA outperforms existing CMIAs in terms of the number of basic building blocks used, differential gain, and CMRR.

Published in:

Instrumentation and Measurement, IEEE Transactions on (Volume:54 , Issue: 5 )

Yehya H. Ghallab, and Wael Badawy, Karan V.I.S. Kaler and Brent J. Maundy, “A Novel Current-Mode Instrumentation Amplifier Based on Operational Floating Current Conveyor,” IEEE Transaction on Instrumentation and Measurement, Volume 4, October 2005, pp. 1941 – 1949.